
N_ 8"-- 15610
o4 _ _,/

// _ 7//

1987

NASA/ASEE SUMMER FACULTY RESEARCH FELLOWSHIP PROGRAM

Marshall Flight Space Center

The University of Alabama in Huntsville

ENHANCEMENT OF COMPUTER SYSTEM

FOR APPLICATIONS SOFTWARE BRANCH

Prepared by:

Academic Rank:

Affiliation:

NASA/MSFC:

Laboratory:

Division:

Branch:

NASA Colleague:

Alex Bykat

Professor

University of Tennessee at

Chattanooga

Center of Excellence - Computer

Applications

Information and Electronic

Systems

Software and Data Management

Applications Software

Delano R. Hyter

Date:

Contract No:

August 5, 1987

The University of Alabama in
Huntsville

NGT-01-008-021

IX

_V

ENHANCEMENT OF COMPUTER SYSTEM

FOR APPLICATIONS SOFTWARE BRANCH

Alex Bykat

Professor of Computer Science

Center of Excellence - Computer Applications
University of Tennessee

Chattanooga, TN

ABSTRACT

This report presents a compilation of the history of a two month

project concerned with a survey, evaluation and specification of a

new computer system for the Applications Software Branch of the

Software and Data Management Division of Information and

Electronic Systems Laboratory of Marshall Space Flight Center,
NASA.

Information gathering consisted of discussions and survey of

branch activities, evaluation computer manufacturers literature,

and presentations by vendors. Information gathering was followed

by evaluation of their systems. The criteria for the latter were:

the (tentative) architecture selected for the new system, type of
network architecture supported, software tools, and to some extent

the price.

The information received from the vendors, as well as additional

research, lead to detailed design of a suitable system. This
design included considerations of hardware and software

environments as well as personnel issues such as training. Design

of the system culminated in recommendation for a new computing

system for the Branch.

IX-i

ACKNOWLEDGEMENTS

I would like to express my appreciation of the hospitality
extended during my tenure at Marshall Flight Space Center. I am
quite impressed with the efforts of both, Ernestine Cothran,
NASA/University Relations and Gerald Karr - NASA-ASEE Program
Coordinator, to provide a meaningful and all-round experience
during the program.

My thanks and appreciation go also to Mr. Ray H. Craft and
Mr. Delano R. Hyter for, not only providing a cordial and
productive atmosphere, but also for their efforts in providing the
opportunity to participate in their program.

Finally, my thanks go to Dr. G.R. Wallace, Mr. J.H. Lucas, and
Mr. D.J. Aichele, for supporting and helping to identify sources
for further cooperation with MFSC.

IX-±i

CONTENTS

I. Introduction 6

2. Planning 8

2.1. Project activities 8

2.2. Resource allocation 9

2.3. Resources available and needed , 9

3. Project specification 10

3.1. General discussion , 10

3.2. Project specification , , _ . 14

4. System survey and analysis 14

4.1. Current system _ 14

4.2. Survey 15

4.3. Analysis 16

5. Baseline design _ 17
5.1. Local Area Network (LAN)........... 17

5.2. Towards the future 19

5.3. Application development software 21

5.4. Software for embedded systems 21

6. Information gathering 22

6.1. Operating system 22
6.1.1. VMS 22

6_1.2. UNIX 23

6.2. Systems reviewed , 25

7. Detailed design 27

7.1. Personnel 27

7.2. Hardware : 27

7.3. Software , 30
7.3.1. General management , . . 30

7.3.2. Project management 30

7.3.3. Software development , . 30

7.3.4. Document preparation 32

7.3.5. Training tools , 32

8. Conclusion 33

9. Appendix I: Software development life cycle 35

I0. References 37

11. Glossary 38

12. Index 41

IX-iii

FIGURES

Fig. 2.1.1. Project stages: Define, Design
Fig. 2.1.2. Project stages: Accept, Install
Fig. 3.1.2.1. Software Engineering functions
Fig. 5.1.1. Applications Software Branch computing system

architecture
Fig. 6.1.2.1. Unix structure ,
Fig. 7.2.1. Applications Software Branch computing system

architecture

8
8

12

19
24

29

IX-iv

1. Introduction.

This report presents a compilation of the history of a two month

project concerned with a survey, evaluation and specification of a

new computer system for the Applications Software Branch of the

Software and Data Management Division of Information and

Electronic Systems Laboratory of Marshall Space Flight Center,
NASA. The project was allocated to me within the framework of the

Summer Research Faculty Program conducted between NASA and various
universities.

The general philosophy that I adopted for execution of this

project follows a typical project management pattern; the main

difference is in human resources involved. In this project both

aspects, the project management and project development are

executed by one and the same person, namely me.

Thus, one constraint in this project is the size of personnel: one
person. Another definite constraint was related to the framework

of the Summer Program and to the first constraint: time available
was somewhat less than two man-months.

As it should be with any project, I started the project by
planning the general path that the project would follow. This

planning phase included identification of project activities,

resources available, and resource allocation.

The planning phase was followed by project analysis and culminated

with detailed specification of the requirements of the project.

The first two phases were then followed with a survey and analysis

of the existing computer system. This phase consisted mainly of

interviews of the branch personnel, discussions of their past and

present projects, design of survey forms and collection and

evaluation of the survey information. (The survey form is included
in [Bykat, 1987].)

The next stage, system analysis - analysis of information gathered

in the two prior stages - resulted in some interesting data

concerning the resources used in past projects. For example, the
survey revealed that whereas 92% write and compile their code,

only 62% use debugging tools and only 23% use software monitors to

evaluate the efficiency of the code. (The survey results are
presented in section 4.2.)

The problem definition stage yielded sufficient information to

formulate the base design of the system. Essentially, it became
clear that a distributed system based on networked workstations,

and supported with centralized file system would suit and benefit

development of projects dealt with by the branch.

Thus the design stage of the project was initiated. I started by

collection and selection of information of some leading commercial

system vendors which support computing functions prevalent in the

branch. This stage consisted mainly of collection and review of

IX-i

the vendors data describing their offerings. A number of system
were reviewed - they are listed in section 6.2.

Information gathering was followed by information consolidation.
Here, the vendors offerings were re-evaluated and only a few were
"short listed". The criteria were: the (tentative) architecture
selected for the new system, type of LAN supported, software
tools, and to some extent the price. From this short list, five
vendors were contacted. The requirements of the system were
presented to the vendors (see section 3.2) and detailed discussion
followed. The vendors were requested to prepare a presentation of
their proposed systems.

The information received from the vendors, as well as additional
research, lead to detailed design stage of the system. This design
included considerations of hardware and software environments as
well as personnel issues such as training. A draft of this paper
was prepared and distributed to branch management and selected
technical personnel for comments.

The input from reactions to the draft paper was then reviewed,
evaluated and incorporated. The final recommendation was then
prepared and the project was concluded. The recommendation calls
for a distributed heterogeneous system of multivendor hardware,
interconnected with a local area network, and providing an
integrated software development environment.

The following sections provide detailed account of the various
stages of the project, and specify some of the considerations that
have lead to the final recommendation.

IX-2

2. Planning.

2.1. Project activities.

Define Phase

"project planning
U__

" :project spec.:
1, .t___ I

,!

V,

V!

f!

T!

,!

:system survey:
I I

l,

U

:system analysis"
.t U

. : base design :

. "- info gather:
,,.L

,l

milestones:

Design Phase

If

11

,!

:info consolidate: "
.t • U

:detailed design "
=J.

(3)

Fig. 2.1.1. Project stages: Define, Design•

Accept Phase

milestones:

Install Phase
1I 1,

" presentation : "
U .1___ "

" : critique : "
11 J. .I. -- !1

" : modification "
1, .f............ ;_-U

. : final report :
,T I .t

,, " : further work

e

(s)

Fig. 2.1.2• Project stages: Accept, Install•

IX-3

Milestones.

(I) specification written and accepted.

document: "Specification statement".
(2) baseline design completed.

document: "System design specification".

(3) detailed design completed.

document: "Proposed system".

(4) detailed system design accepted.

document: modified "Specification statement".

(5) summer project concluded.

document: final report.
(6) further work considerations.

2.2. Resource allocation.

Definition

weight days
Problem specification I 1.5

Survey of current system 4 6

Analysis 2 3
Planning I 1.5

Design

Baseline design

Information gathering
Information consolidation

Detailed design

Acceptance

Presentation

Critique
Modification

Installation

Report

Follow-Up

Further work

Continuation

I 1.5
4 6

6 9

2 3

3 4.5

I 1.5

2 3

3 4.5

I 1.5
? ?

2-3. Resources available

Time (9 wks)

seminars and other

and needed.

activities

IX-4

Total time

45

-5

available: 40

3- Project specification.

3.1. General diseussion.

Initial definition of the project:

Survey, evaluate and recommend systems and tools to support

software engineering functions of the Applications Software

Branch which includes requirements through sustaining

engineering. [Hyter, 1987]

Discussion:

To evaluate the existing system and to propose a new system the

above specification needs to be refined. In particular, the

following questions need further explanation:

(I) What type of applications does the branch engage in?

(2) What software engineering functions does the branch engage in"

(3) What type of capabilities have to be supported?

(4) What type of tools are needed to support these capabilities?

(5) What type of system is suitable for this branch?

Discussion of each of these questions now follows.

3.1.1. Type of applications:

Applications can be classified into a number of general areas.

These include information processing (scientific and commercial),

process control, and real time processing. Below, I characterize

briefly some of these areas:

Information processing

The salient features of this type of application are the

formatting of input data by people and formatting of output for
human 'consumption'.

Examples are engineering calculations, information retrieval
etc.

Various types of software fall under this class, and in

particular:

System software

editors, compilers, interpreters..

Real-time software
interaction with 'real world' events:

data gathering, device monitoring, ...

Business software

payroll, inventory...

IX-5

Scientific software

large amount of numerical computation:

engineering calculations, CAE,

system simulation...

Symbolic manipulation software
artificial intelligence,
pattern recognition...

Process control

The salient features of this type of application are the
formatting of input data by machine (and possibly people) and

formatting of output for machine consumption.

Examples are instrumentation control, real time data

gathering, automated manufacturing, etc.

Real-time software

The salient feature of this type of application is interaction

with 'real world' events. Frequently these applications reside
on processors packaged within a product.

Examples are data gathering, device monitoring, on-board

flight control; weapon systems, etc.

After discussions with management and members of the Applications
Software Branch, the following supplementary information was
received.

3.1.2. Software engineering functions:

Typical software engineering functions consist of the following

stages [see also Miller, 1979]:

IX-6

: project management _--:

: system requirements

: software requirements
1

: documentation

: communication

• ° -_ :

: : preliminary design
: _

: : detailed design

: coding and debugging

: integration, pre-operations _-:

: configuration management _-:

: operations, maintenance :

•

: :

I

Fig. 3.1.2.1. Software Engineering functions.

The Applications Software Branch projects fall within these

functions. Generally, the functions of this branch can be

described as [Lucas, 1986]:

Application software development and sustaining engineering;
Support software management and development•

3.1.3. System capabilities required:

Efficiency in numerical computation;

Interactive graphics display: both input and output;

Fair amount of real time processing;

Data acquisition from sensors;

General purpose computation.

Languages used:

predominant:
occasional:

Fortran

assembly, Pascal, PL/M

In addition to above, it is perceived that in coming

applications ADA will be used as the major language of this
branch.

Operating systems used:

VMS, INTEL360, RT-11, RSX-11

IX-7

3.1.4. Tools needed:

System capabilities/tools considered should include:

Simulators, emulators, logic analyzers, debug and diagnostic
aids;

Computer aided requirements analysis, design, code generation,

test generation and documentation;

Project management and configuration control;

Cost, training, productivity, quality, and flexibility to
support a variety of projects;

Networks. [Hyter, 1987].

System architecture:

Two major types of computer system architecture that have to be
considered are:

a) centralized, and
b) distributed.

Further, a decision is to be reached on the processor
architecture:

a) uniprocessor,

b) multiprocessor, or
c) parallel processor.

Scope of the system:
budget: $600,000

personnel size: 25

Typical hardware engineering questions need to be answered:

class of hardware that best addresses functions to be supported,

commercial availability of such hardware and its cost,

type of interfacing required,

what constraints are present (size, environment...).

Information collected in answering the above questions lead to a

refinement of the project specification presented in the next
section.

IX-8

3.2. Project specification.

Narrative.

Survey, evaluate and recommend a computing system consisting of
appropriate hardware and software tools to support software

engineering functions of the Applications Software Branch.

The software tools will form

(a) integrated project management environment

(b) integrated program development environment.

The system is to be capable of sustaining development of

applications which exhibit:

high numeric computation component,

interactive color graphics manipulations,

real time data acquisition from sensors,

real time control, and

general purpose computation.

The goal of the system is to provide a software environment for

activities which span software design and implementation life
cycle, and in particular:

project planning, specification design,

design implementation, verification, and
installation

of software products.

Languages supported by the system will include FORTRAN and ADA,

and possibly C and a good Prolog environment for use in rapid

prototyping of projects.

An immediate expected benefit of the selected system is to support

and promote high productivity both in software project development

activities and implementation of these projects.

Computer characteristics.

A general commercial system is required. The system must be able
to support at least 25 users running a mix of document

preparation, telecommunications, project management, and code
development software.

Hardware Interfaces.

The system must support standard serial and parallel ports, and
a LAN interface (Ethernet).

Software functions.

Software should include a project management environment, code

development environment, document preparation tools and
telecommunication tools.

IX-9

4. System survey and analysis.

4.1. Current system.

Currently the computer system serving the Applications Software

Branch is organized into a number of stand alone and time sharing
centralized computing systems. These systems include:

INTEL 8080 - A stand alone computer operating under ISIS II

operating system. Languages supported are Assembler,

FORTRAN-80, PL/M. Also supported is ICE-80 product

development tool for 8080 CPU. This computer is
utilized mainly for the MEA project.

PDP-11/23,

PDP-11/73 - A stand alone computer operating under RT-11 and

RSX-11 operating system. Languages supported are

FORTRAN. The PDP-11/23 is utilized mainly for the
BATSE project.

VAX 11/7xx,
mVAX II A number of timeshared dedicated computers operating

under VMS operating system. Languages supported are
FORTRAN, Pascal, PL/1.These computers are used for

the HOSC project, the POCC project and the Space
Telescope project.

The mode of operation of these computers is predominantly

development of the software in a high level language, compilation

and subsequent transfer (if necessary) of the object code to the

target computer. Some projects were written in an assembly

language and subsequently assembled and ported to a target
computer.

Project groups within the branch are, typically, small and consist

of 3-8 programmers. Although groups work on independent projects,

some groups are divided into a number of teams. Further, project
groups frequently work on programs which are targeted for

different types of hardware. Majority of software is developed in
FORTRAN.

4.2. Survey.

To get a better understanding of the capabilities used in the past

projects developed by the branch, I have conducted a survey of the

personnel. Out of 20 technical personnel, 13 have responded to the
survey. The information is presented below.

Capabilities used:

graphics: 6 (46%)

device drivers: 5 (38%)
port interfacing: 4 (31%)

communications: 7 (54%) sound : 0

IX-lO

Languages used:

FORTRAN: 12 (92%)

PASCAL: 2 (15%)

OS used:

VMS: 11 (85%) UNIX: I (8%)

Software development tools used:

compiler: 12 (92%)

emulator: I (8%)

debugger: 8 (62%)

Evaluation tools:

PL/M: I (8%) C: I (8%)

INTEL360:4 (31%)

interpreter: I (8%)

file manager: 3 (23%)

software monitor: 3 (23%) hardware monitor: 0

Project management tools used:

GANTT: 0 HIPO: 0 Milestone: 3 (23%)

Flow charts: 5 (38%) Costing: 0

Storage maps: 0 Coverage matrix: 0

Document preparation tools used:

screen editor: 10 (77%) wp: 3 (23%)

Networking tools used:

Ethernet: 4 (31%)

Hardware used:

VAX: 11 (85%) PDP: 2 (15%) IBM: 3 (23%)

Programming background=

Average Programming experience: 8 yrs

BS Degree: 11 (85%) MS: 2 (15%)

Math: 8 (62%) CS: 4 (31%)

ADA: 5 (38%)

RSX: I (8%)

editor: 12 (92%)

code manager: 0

PERT: 0

Data Flow: 3 (23%)

INTEL: 7 (56%)

Phys: I (8%)

4.3. Analysis.

Current system consists of a number of stand alone computing
systems with no communication lines between them. Some of these

systems are outdated and should be replaced. In particular the
INTEL 8080 is an old 8 bit architecture. The PDP 11/23 is

similarly in its advanced years.

The majority of projects are small to medium size, and should be

supported by a system suited for this mode of operation. The

particular advantage of software development in small sized

"_X-I 1

projects is little inertia that needs to be considered when making
source modifications and design changes. This makes it suitable
for an approach to software development in terms of reusable,
interchangeable, and configurable tools.

I have noted above, that the hardware currently in use shows signs
of aging. However, the age of the hardware is not the major
disadvantage; in fact it is the general architecture of the
departmental system, or rather a lack of it.

Given that the majority of the Applications Software Branch'
projects are developed in high languages, it would be conducive
both to the improvement in productivity and to improvement in job
satisfaction to provide an integrated programming environment.

An integrated software project requires frequent use of common
information and data, eg. global files, cross-compilation tools
etc. When the project is developed on a number of stand-alone
systems, this requirement creates a problem of information
integrity, decreases productivity, and magnifies the probability
of problems during system integration.

Thus, the programming environment should be based on a locally
distributed system architecture, linked together via a local
network.

The need for porting the developed software to target systems can
be resolved by provision of appropriate cross-compilers or
cross-assemblers.

The "interchangeable, reusable and reconfigurable tools" paradigm
of software development is well supported by Unix environments. In
fact, Unix thrives on creation of tools with clean interfaces, and
subsequent creation of larger programs by building interfaces
which use those tools as communicating cooperating processes.

Unix environment also possesses facilities for "compile source to
object and download object to (non-Unix) target" operations which
are important in the projects developed in the Applications
Software Branch (eg. MEA project).

5. Baseline design.

Analysis of typical branch activities indicates that the

programming environment should be based on a locally distributed

system architecture, linked together via a local network. Such a

system may consist of a number of networked general-purpose
workstations supported by compute and file servers.

Each of these workstations would be capable of functioning in a

stand-alone mode thus off-loading the system servers; for compute

intensive tasks the compute server would be used.

IX-12

The file server will provide a central file system (with file
security) to ensure the integrity of official versions of the
project files, while the individual node storage capacity would be
used for single user development, back up and other administrative
chores.

5.1. Local Area Network (LAN).

LAN allows configuration of a locally distributed computing

system. Among the major advantages of such a system one can count:

architecture

fault tolerance -

incremental

common database -

data integrity -

data security -

communication -

reusability

productivity

quick response -

cost

fun

can be used as a number of stand-alone

systems or as a distributed system.

failure of one part of the network has

only a limited effect on the operation
of the network.

new nodes can be added when needed,

allowing the system to grow together

with the organization

supports development and maintenance and

access to common departmental databases

of programs, files and other
information.

file server can regulate access to the
official version of the information.

file server can permit or deny access to
information.

allows communication and interchange of
expertise; allows electronic mail
communication.

promotes software reusability and

sharing thus increasing productivity by

reducing development effort.
see above.

single user nodes can be dedicated to
individual tasks.

allows sharing of hardware devices and

software products.

brings the computing system to

programmers office and consequently

increases job satisfaction (and
productivity).

Given the preceding discussion, we no longer can ask whether the

computer systems for the Applications Software Branch should be

linked via a LAN, but merely what LAN.

Besides the usual considerations of speed, bandwidth, reliability,

simplicity of use and cost, a major concern when choosing a LAN is

compatibility with other network existing in the organization.
Since MFSC/NASA has a number of branches and divisions with

computer systems connected via Ethernet, it seems that a natural
choice for this branch is therefore Ethernet LAN.

IX-19

In fact, the existence of Ethernet in MFSC is a bonus. Ethernet is
a baseband channel, optimized for LAN communications, which offers
high-bandwidth and high transmission speeds for interconnection of
intelligent nodes• Further, Ethernet interfaces are commercially
available for many workstations and computers• Network
architectures based on Ethernet offer typically the following
functions (via application layer of OSI):

resource sharing,
file transfers,
remote file access

database management -

network management.

read, write, and update on files
residing on remote systems,
manipulations of databases
distributed throughout the network,

Thus having decided on the general approach to the Applications
Software Branch computer system "architecture" we exhibit this
architecture, a locally distributed system communicating over
Ethernet, in the following diagram• This diagram shows only the
basic configuration• Other nodes and servers may be needed; in
particular addition of a print server and a terminal server may be
desired• (All these servers provide interfaces between compatible
devices on the LAN, and allow sharing of these devices among the
network's nodes•) Also, connection of the existing computer
systems may be specified.

other MFSC and/or public networks

: Routing :
: server :

/ : Routing :
/......... : server :

Applications Software Network

: File :

: server :

: Node :

: 1 :
: Node :...... : Node :
: 2 : : 25 :

Fig. 5•I•I• Applications Software Branch computing

system architecture•

The file server can be a minicomputer or a powerful workstation

with sufficient mass storage to serve the database requirements of

the branch• The nodes can be disk-less workstations, or

workstations with local storage facilities (eg. hard disks)• In

IX-14

the latter case, the local storage may be configured to be a part
of the main file system (yielding a distributed file system), or
it may be used for local storage individual to each node. In
either case, the network software must provide transparent file
system operations.

Similar considerations apply to distributed/central compute power
of the system.

5.2. Towards the future.

Networked workstation concept advocated in this paper is an

adaptation of a distributed system architecture. Such a system has

a growth potential due to the ease of exchange, addition and
removal of member nodes (see also section 5.1). A set of nodes in

the system may consist of multi-vendor devices and computers, with

the particular mix to be tuned to prevailing project requirements.

Thus, a distributed system allows creation of a heterogeneous

system.

Supported with a good network management software, this

distributed system will offer total transparency of architecture

to individual clients. At the same time, it will allow maximal

utilization of systems resources.

The transparency of the system will manifest itself in promotion

of perception of the resources of the system as belonging totally
to the individual user. These resources can be as diverse as

uniprocessors, specialized graphics devices, supercomputers, array

processors, dedicated AI machines, general scientific computers,

specialized finite-element machines, special storage devices,

various supporting peripheral devices, etc.

To achieve such transparency, the system must be supported by

appropriate network management software. This software must

provide data independence as well computation independence of

existing or future computer architectures.

Data independence (eg. based on the eXtended Data Representation
(XDR)) provided in a multi-vendor system allows for ease of

integration of new computer architectures without unwarranted

commotion due to physical incompatibility with existing components

of the system. Computation independence (eg. based on Remote

Procedure Call (RPC)) supports integration of the computational

power of the new computer, much as data independence supports data

exchange.

Some such software tools are commercially available today, some

will become available in the near future, yet others are still

"flights of fancy".

In particular, the Network File System (NFS) by Sun Microsystems

Inc. provides data sharing transparency, remote login facilities
etc. NFS is a component of Sun's Open Network Computing (ONC)

IX-15

which provides an environment consolidating resources of multi-
vendor computers operating under a variety of operating systems.
NFS translates client file system into appropriate destination
system commands, eliminating the need to learn new command
languages. File sharing as well as file locking, and record
locking is supported. The NFS system is based on Unix environment.

A particular strength of NFS is its ability to handle
heterogeneous computing systems, its portability, as well as its
independence of transport protocols (the latter is achieved
through the RPC layer). For example, NFS is reported to have been
implemented on machines such as Apollo, Cray, DG, HP, IBM PCs,
mVax-II, Vax 11, Wang, etc, and has been ported to run under
operating systems such as DEC Ultrix, VMS (Wollongong), Berkeley
4.2, System V.2, MS-DOS, DG MV 4000 and, ofcourse, SUN-OS.

The recently announced Network Computing System (NCS) by Apollo
Computers Inc. promotes distributed computing via remote procedure
calls to network resources and originating from a client process.
NCS provides software (written in C) which runs on Unix systems in
a heterogeneous networked environment. When ported on these
machines, this software allows "packets of computation" belonging
to the same process to be distributed and executed on various
machines in accordance with availability of currently unused
computational power.

Both of the above network systems coexist with the standard
transfer protocol TCP/IP.

5.3. Application development software.

Software development tools required are:

operating system, command languages, programming languages,

symbolic debuggers, linkers, library managers, source
control systems, full screen multiple window editors, other

editors.

Databases and file systems:
Databases are developed and serve groups of people. In a

program development environment, the group is a project

team. The personnel accesses and modifies the database, and
therefore data compatibility, distributed processing,

integrity and security are of major importance.

Project management:
Project management software should support methods for

requirement formulation, performance evaluation, quality and

reliability testing, planning, costing. This software should

include :

planning tools:
milestone charts, PERT chart generator, GANTT chart

generator, costing chart generator.

IX-16

tracking tools:
software version control, modification control, object
module librarian, bug report generators.

design tools:
flowcharts, HIPO charts, storage maps, coverage matrix
(system functions v. program names).

documentation aids:
PDL, structured charts, data flow diagrams.

performance and evaluation:
software monitor, hardware monitors.

5.4. Software for embedded systems.

To improve productivity, software for embedded systems may be

developed in high level language on modern workstations. Object

code can then be generated by a cross-compiler and ported run on

the target system. Testing and evaluation of the run efficiency of

this software (on the target system) should also be performed in a

high productivity environment. To afford this approach, emulators

and logic analyzers are needed.

An emulator allows the developer to see the "role" that the

software would be playing on the target system. The emulator

frequently allows a good measure of control over the execution of

the software, so that the software can be tuned and various tests

conducted to compare the run properties of the new version versus
the old one.

In addition to cross-compilers, disassemblers may be used to

convert object code to assembly code. The latter may then be used

to run "regression tests" to compare the object codes of an old
version against that of a new version.

6. Information gathering.

6.1. Operating system.

The operating system used predominantly in the Applications

Software Branch projects is the VAX/VMS running on various DEC
machines. It is evident, therefore, that there is some existing

expertise of this system among current personnel. However, it

should be realized that a good application development environment
would insulate the user from the operating system. Consequently,

the existing expertise with VMS is not taken as a constraint in

the choice of a new system.

A major alternative to VMS is the operating system Unix. A

particular advantage of Unix is its pervasiveness on a majority of

hardware. Concomitant with this is, of course, transportability of

IX-17

programs developed under Unix, as well as a very large software
base.

Further, Unix is fast becoming a standard in federal government
(Unix is specified in 70% of government procurement [GCN, 1987a])
and industry - it has been the OS of choice in Universities for a
number of years. The armed forces have also recognized the
importance of Unix. For example, both Army and Air Force are
procuring Unix based systems; each has requested 20,000 32 bit
systems. (The Army contract is estimated at $600 Million, while
the Air Force contract -- Project 251 -- is estimated at
$3 Billion [GCN, 1987b].)

6.1.1. VHS.

VAX/VMS is a multiuser, timesharing operating system for DEC VAX

line of hardware. The system supports demand paging and swapping

to satisfy memory requirements of its processes. A VMS process has

a limit of 4 GB of memory, with a I GB limit per program.

VMS provides good program development tools, and supports various
languages such as Fortran, C, Pascal, Ada, Cobol etc. It sustains

electronic mail, and supports networking (Ethernet, DECnet).

VMS can be supplemented with various specific application packages

and environments. Of particular interest are the VAX ADA and
VAXset.

VAX ADA can be integrated with VMS to provide the standard VMS

tools such as: debugger, record management services, run-time

library, Digital Command Language and, of course, VMS file system.

VAXset is an optional toolset which together with the standard VMS

tools mentioned above represent the VAX/VMS software engineering
environment. This tool set consists of:

Language-Sensitive Editor (LSE) -

A multi-window screen editor with language syntax

sensitivity provided by language-specific templates.

Code Management System (CMS) -

A program library system used for source-code and

documentation control of software projects.

Module Management System (MMS) -

A set of procedures for identifying dependencies of a

system, and automatic rebuilding of the system in

accordance with changes in referred modules.

Test Manager (DTM) -

Facilitates user-designed regression testing of the

project software, generation of benchmarks and result
review.

Performance and Coverage Analyzer (PCA).

Automates collection and analysis of data for program

performance evaluation and generation of appropriate
reports.

IX-18

Good tools notwithstanding, a main disadvantage of VAX/VMS is its
proprietary nature. Though the installed base of DEC computers is
large, the VMS base is restricted to the VAX series• Selection of
a proprietary system implies smaller software base (compared to a
that of an industry standard system), and limits future expansion
and hardware changes.

6.1.2. UNIX.

Unix is fast becoming a standard in federal government and
industry - it has been the OS of choice in Universities for a
number of years.

For our purposes, the following general features of Unix are its
particular strengths:

multiuser,

multitasking,

portable to multivendor computing systems,
good development environment:

numerous tools,
utilities,

powerful user interface,

easy linking of programs into large applications
good software project tools:

source-code control system,
make utility,
documentation tools•

A major criticism of early versions of Unix pertained to its

rather cryptic command names and its, rather obtuse, user

interface. These 'blots on the Unix character' have been erased by
the software interfaces provided on most workstation vendors• In

fact, it is my opinion that the original criticism was mainly
related to 'fear of the unknown' by the critics for it is

unusually easy to shape and bend Unix interface to conform with
user's personal wishes•

Unix can be perceived as having the following layered structure:

Utilities

Shell : :

: • . : :

: : : : :
: : Kernel : :

: I I : :

Fig. 6•I•2•I• Unix structure•

IX-19

with the layers comprised of:

Utilities:
networking, software development tools, file
manipulation, languages

Shell :
command language interpreter, C language

Kerne i :
operating system functions

Of the three layers, the programmer interacts normally with the
utilities and possibly the shell; the primitive functions of the
kernel are accessed only for special hardware manipulation.

UNIX provides a "Programming WorkBench" environment which supports
large project development. This environment is suitable for
development of programs which are to be compiled and run on non-
Unix target systems, including target real-time systems which
differ markedly from timesharing environment. The Programming
WorkBench includes facilities such as [Mitze, 1981] :

flexible remote job entry
source-code control system
control over interface specification
control over changes in documentation, source and data
modification-request control system
easy recreation of older versions
control over official and test versions
make files for compile and link mixes
variety of documentation tools
text processing tools
electronic mail

Over 90% of Unix is written in the programming language C . Since
the function of a programming language is to make system resources
available to the program, C is particularly useful in a Unix
environment. In fact, C is the "official" language in Unix
systems. C is an "intermediate level" language, providing the
syntax and control constructs of a high level language, as well as
power and flexibility of a low level language. It affords access
to Unix source, libraries and utilities modules (promoting code
reusability) as well as access to machine resources at primitive
level. It is suitable for complex small, medium and large program
development.

In short, coming from IBM personnel:
"Unix provides considerable functional power to the individual
user, provides multi-user capabilities where needed, is open-
ended, and has a large user and application base." [Henry, 1986]

6.2. Systems reviewed.

The following is a brief summary of the offerings reviewed for the
new computer system.

IX-20

Apollo. (Domain 3000)
A 32 bit workstation based on 68020. 2/4/8 MB RAMwith
86/170/380 MB disk. Fair resolution (I024x800) with 15"
color display. Runs at 16 MHz. Supports 3 terminals.
Ethernet. Good user interface.

Unix. Good software development environment provided by
Teledyne (TAGS) and Apollo's DSEE. The latter caters for
development, management and maintenance of software, and
provides the following capabilities: inter-module dependency
tracking, automatic change notification, source code history
control, task management and system configuration
management.

Languages supported are Fortran 77, Pascal, C, Lisp and ADA
(the latter is expected within a month).

Sun Microsystems. (3/52M)
A 32 bit workstation based on 68020. 4/32 MB RAMwith
72/140/575 MB disk. Good resolution (1152x900) with 19"
monochrome display. Runs at 15 MHz, rated at 1.5 MIPS. Unix.
Ethernet. Good software development environment. Good user
interface.

HP. (318M)
A 32 bit workstation based on 68020. 4 MB RAM with 80/571MB
disk. Fair resolution (I024x768) with monochrome 17"
display. Runs at 16.6 MHz. Unix (HP-UX). Insufficient
information on software environment.

DEC. (Vaxstation 2000)
A 32 bit workstation. 4/6 MB RAMwith 42 MB disk. Fair
resolution (I024x864) with 19" color display. Rated at
I MIPS. Ethernet. Ultrix. Good software management
environment (CMS, MMS: similar to Unix sccs). Good user
interface - VAX Workstation Software (VWS).

Apple. (MAC II)
A 32 bit workstation based on 68020. I/8 MB RAMwith
20/40/80 MB disk. Low resolution (640x480) with 13" color
display. Runs at 16 MHz and is rated at 2 MIPS. Unix A/UX.
New machine, inexpensive but software environment is in
question. EtherTalk.

Compaq. (Deskpro 386/40)
A 32 bit workstation based on 80386. I/4 MB RAMwith
40/70/130 MB disk. Poor resolution (EGA). Runs at 16 MHz and
is rated at 3 MIPS. Unix V.3. New machine, inexpensive but
software environment is in question.

Rational. (RI000/200-20)
A uniprocessor ADA machine. 32 MB RAMwith 2 GB disk.

IX-21 _ _

Supports from 16 to 32 users. Ethernet. Good ADA environment
but what about the rest? Young company (2yrs).

Convex. (C-I)
A supermini. 8/128 MB Ram with 414 MB disk. 64 bit words
with speed rated at 60 MOPS. Can support 160 users. Unix.
Insufficient information.

Integrated solutions. (Optimum V8S)
A 32 bit workstation based on 68020 with 2/10 MB RAMand
140/280 MB hard disk. High resolution (1280x1024) with a 19"
color display. Runs at 16MHz. Supports 16 users. Has a
proprietary Transparent Remote File System. Good user
interface in the form of Desktop Manager. Unix 4.2.
Ethernet.

Encore. (Multimax-320)
A 32 bit parallel processor supermini based on NS32032 with
4/128 MB RAM and 515/4120 MB hard disk. Speed rated at 1.5
MIPS per CPU. Basic configuration has 2 processors, cost _
$139,000. Can be configured to have 20 processors. Works out
at $11,000 for each two additional processors. Can support
from 20 to 250 users. Unix (UMAX). Insufficient information
on software supported for this machine. Ethernet.

Harris. (HS-20)
A 32 bit workstation based on 68000 with IMB RAMand 50MB
hard disk. Relatively low resolution (832x600) with a 19"
color display. Speed rated at .575 MIPS. Expensive for what
it offers. Insufficient information on software supported
for this machine. Unix. Ethernet.

Motorola. (M6600)
A 32 bit workstation based on 68020. Unix. Apparently
supports 128 users. Insufficient information.

Prime.
Runs under operating system PRIMOS. Proprietary system. No
Ada, no C, no Ethernet (?). Insufficient information.

7. Detailed design.

7.1. Personnel.

The personnel of the branch numbers 24 and consist of the

following general categories:
a) branch management I

b) project management 2
c) technical (programming) • 19

d) clerical (secretaries) 2

Each of the above categories requires different software

environments, though any category may very well use any of the

IX-22

software available. These requirements can be categorized into the
following environments:

I. general management
2. project management
3. software development
4. document preparation

(category a)
(category a, b, c)
(category b, c)
(category a, b, c, d)

Though it would be very desirable to have all four of the above
unified under one environment, it is, at present, rather difficult
to find a commercial system providing this amount of integration.
However, in a general workstation environment (such as Sun
Microsystems, Apollo Computers, and similar) integration of at
minimum of environments 3 and 4 is the norm.

Finally, another component should be available to the branch,
namely:

5. training tools (category a, b, c, d)

On line help facilities are nowadays provided with (just about)
all software. Whereas helpful - and at times indispensable - to an
experienced user, on line help should be complemented with
tutorials, computer assisted instruction (CAI) tools, as well as
hot line facilities and on site courses. Of course, good hardcopy
manuals are a must.

7.2. Hardware.

The programming environment should be based on a locally
distributed system architecture, linked together via a local area
network. This system should consist of a number of networked
general-purpose high-performance workstations supported by compute
and file servers. Interfaces must be provided to attach and/or to
access existing computer systems. The latter may function as
additional servers.

Each workstation should be configured with sufficient RAM memory
(at least 6 MB) and with local storage facilities (hard disk and
streamer tape). In such configuration each workstation will be
capable of functioning in a stand-alone mode thus off-loading the
system servers; for compute intensive tasks access to (existing or
new) compute server should be available.

Servers will provide interfaces between compatible devices on the
LAN, and allow sharing of these devices among the network's nodes.

File server can be an existing minicomputer or a powerful
workstation with sufficient mass storage to serve the database
requirements of the branch. The file server will provide a central
file system (with file security) to ensure the integrity of
official versions of the project files, while the individual node
storage capacity would be used for single user development, back

IX-23

up and other administrative chores. In addition, as need arises,
local storage should be configurable into a part or whole of the
file system for the branch (yielding a distributed file system).
This will provide facilities for close communication on smaller
projects, while preserving access to the general information
depositories for the branch (such as documentation aids, reusable
libraries, etc.).

Similar considerations apply to distributed/central compute power
of the system.

The computer system for the Applications Software Branch should be
linked via a LAN. Besides the usual considerations of speed,
bandwidth, reliability, simplicity of use and cost, a major
concern when choosing a LAN is compatibility with other networks

existing in the organization. Since IAN of MFSC is based on
Ethernet, the latter should form the network backbone for this
branch.

(Ethernet is a baseband channel, optimized for LAN
communications, which offers high-bandwidth and high transmission
speeds for interconnection of intelligent nodes. Further, Ethernet
interfaces are commercially available for many workstations and
computers.)

Network architectures based on Ethernet offer (via application
layer of OSI) resource sharing, transparent file system
operations, remote file and system access, distributed database
management, network management, and so on.

A basic configuration for the new computer system is presented in
the following diagram. Other nodes and servers may be needed; in
particular addition of a print server and a terminal server may be
desired.

Supported with a good network management software, the proposed
heterogeneous distributed system will offer total transparency of
architecture to individual clients. At the same time, it will
allow maximal utilization of systems resources.

These resources can be as diverse as uniprocessors, specialized
graphics devices, supercomputers, array processors, dedicated AI
machines, general scientific computers, specialized finite-element
machines, special storage devices, various supporting peripheral
devices, etc.

To achieve such transparency, the system must be supported by
appropriate network management software. This software must
provide data independence as well computation independence of
existing or future computer architectures.

Suitable network management system is exemplified by Network File
System (NFS) by Sun Microsystems Inc., and the recently announced
Network Computing System (NCS) by Apollo Computers Inc.(see
section 5.2). Both NFS and NCS are open system. These systems

IX--24

seem to evolve towards parallel execution of computational
activities of a client over the available network resources• (As a
guide, this is a rather coarse grain parallelity at the moment.)

other MFSC and/or public networks

: Routing _ / : Routing :
: / : server :: server

: _ File

: : servers:
: J I

:

:

:

:

:

Compute: _ Hard :

: servers: : copy :

:

Applications : Software : Branch

: : :

: : :

: : :

.... • • __--
• • • • • •

: Node : : Node :...... : Node :

: I : : 2 : : 25 :

: archive:

: storage:

Fig. 7.2•I• Applications Software Branch computing

system architecture•

7.3. Software•

7.3.1 . General management.

The following are software tools used in general management:
scheduler, spreadsheet, access control, electronic mail,

resource measurement, cost estimation, work breakdown

structure (WBS).

IX-25

For additional discussion see section 5.3.

7.3.2. Project management.

The following are software tools used in project management:
scheduler, project tracking, spreadsheet, access control,
electronic mail, resource measurement, WBS.

For additional discussion see section 5.3.

7.3.3. Software development.

Software development tools should support all of the software
engineering functions (see section 3.1.2). Thus, I shall classify
the software under the following software engineering activities.

R - Requirements specification and analysis.
D - Design and analysis.
P - Program generation and testing.
S - System integration and testing.
C - Configuration management.

The following is a glossary of a minimal set of tools that I
perceive as indispensable in a software engineering toolkit:

Consistency checker.
verifies mutual consistency of requirements and
design for specific functions.

Cross-referencer.
provides cross-reference information of use and
misuse of program components.

Design language processor.
Creates automatically documentation of the program
design, as it progresses through its various stages.
Particularly useful for validation and evaluation of
the system design.

Diagnostic and debugging tools.
Tools for identification, isolation and eradications
of program errors.

Emulator.
A software tool allowing execution on a host
computer of a program written for a target computer.

Program Logic analyzer.
analyses and provides information about the logic
structure of a specified program.

Program flow analyzer.
A program that provides source code statement
frequency and timing data in test executions of a
system.

IX-26

Program sequencer.
A program verification tool for forcing test
executions of every branch and every accessible
statement in a systems code.

Simulator.
A program that provides on the host computer the
(precise) effect of execution of instructions native
to a target computer.

Requirements language processor.
A language and its processor for unambiguous formal
specification of requirements for a software
project.

Software monitor.
A memory resident tool that captures and exhibits
performance statistics of a software system.

Syntax directed editor.
An editor using knowledge of a language to prevent,
diagnose and correct syntax errors.

Trace program.
A program that captures and exhibits chronological
history of events in an execution of a software
system.

The following table show the coverage of the software engineering
functions by the above mentioned tools:

IX-27

: R : D : P : S : C :
.................................. _ __

Consistency checker• : X : X : : : :

Cross-referencer. : : : X : : :

Design language processor. : : X : : : :

Diagnostic and debugging tools. : : : X : : :

Emulator. : : : : X : :

Logic analyser. : : X : X : : :
.............. - _---_ ---_

Program flow analyser. : X : : X : X : :

Program sequencer• • : : X : : :

Simulator. : : X : : X : :

Requirements language processor• : X : : : : :

Software monitor• : : : X : X : :

Source code control system : : : X : X : X :

Syntax directed editor. : : : X : X : :

Trace program• :X:X:X:X:
_,___,___,_--,_--,----"

In addition to the above, the branch will require 'specialized'

tools for real time applications and target computer evaluations.
These tools will include:

Hardware logic analyzer.

An electronic device that monitors the logic states of

digital systems and stores the results for subsequent

display and analysis•
In-circuit emulator.

An emulator allowing alteration of control paths, monitoring

and changes of memory registers and memory locations, etc.

7.3.4• Document preparation.

The following are software tools used in document preparation:

Graphics editor, word processor with spelling checker,

grammar checker, dictionary generator.

7•3.5. Training tools•

The following are software tools used for training:

Training manuals, reference manuals, tutorials, CAI
tutorials, on-site training.

.IX-28

8. Conclusion.

This project is concerned with a survey, evaluation and
specification of a new computer system for the Applications
Software Branch of the Software and Data Management Division of
Information and Electronic Systems Laboratory of Marshall Space
Flight Center, NASA.

The computer system serving currently the Applications Software
Branch is organized into a number of stand alone and time sharing
centralized computing systems. These systems include INTEL 8080,
PDP-11/23, PDP-11/73, and a number of VAX 11/7xx and mVAX II. The
mode of operation of these computers is predominantly development
of software in Fortran, compilation and subsequent transfer (if
necessary) of the object code to the target computer.

The obsolescence of some of the above system hardware, lack of
support of current software engineering technology, and the
projected technological and software needs of future Space Station
projects entail a need for a new system able to support current
and future software engineering environments of the branch.

My recommendation to the Branch is to acquire a distributed,
heterogeneous system consisting of current, multivendor hardware
interconnected with a local area network, and supported by
appropriate software to provide an integrated software design and
development environment.

The hardware should consist of high-performance workstations
running a Unix operating system. The workstations should be
configured with sufficient memory (6-8 MB) to support software
development activities and a hard disk storage of sufficient
capacity (140 MB) to offload the LAN traffic by restricting the
swapping, paging and other system related operations to the local
disk. Suitable candidates are SUN, Apollo or mVax.

The network architecture is to be based on system which provides a
presentation layer over and above a transport protocol such as
TCP/IP. This presentation layer has to support a kaleidoscope of
computer hardware and must provide transparency of file and
compute operations to be performed in this heterogeneous
environment. A suitable candidate would be NFS (SUN Microsystems)
and possibly NCS (Apollo Computers).

No special interfaces are currently required beyond the serial and
parallel provided as standard ports on most workstations. However,
in addition to the general purpose workstations, the branch will
require special purpose workstations such as, for example,
mAnalyst 2000 by NWIS for hardware logic analysis and in-circuit
emulation.

The software development environment is to consist of components
such as general and project management, code design and
development, configuration management, document preparation, and
personnel training.

IX-29

Such system, in my judgement, will offer immediate productivity
gains, increase in job satisfaction, virtual "plug in"
expandability, and a suitable platform for insertion of future
technology, thus assuring not only continued currency but also
longevity of the system without undue proclivity to obsolescence.

IX-30

9. Appendix 1: Software development life cycle.

The following are various phases of a software development life

cycle adopted by MFSC/NASA, [Aichele, 1983]. For a comparison, I
follow this with the more generalized specification as understood
in industrial organizations.

Conceptual

Initial definition of system requirements. Preliminary
functional specification and software configuration.
Results in:

Request For Proposal (RFP),

Data Requirements Document (DRD),

Work Breakdown Structure (WBS),
Statement Of Work (SOW).

Requirements

Elaboration of requirements of DRD. Construction of software
management and development plan.
Results in:

Interface Control Documents (ICD), and
final Software Requirements Document (SRD).

Design

Preliminary design leading to Preliminary Software Design
Specification. Detailed design follows and
results in:

Software Design Specification (CODE-TO),

Programmer's Handbook, and
Software Test Specification.

Code and Debug

Module coding debugging.
Results in:

Initial internal software delivery.

Verification

Verification of logic of the debugged software. Formal

change control and problem report procedures start from this
phase.

Results in:

delivery of the software, and

Functional Configuration Inspection (FCI) document which

ascertains conformance with requirements.

Validation

Evaluation of system/software compatibility and software
performance.
Results in:

final software delivery and configuration inspection,
software user manual, and

validation report.

IX-31

System Integration
Final test of software at the highest possible system level.

Results in:

Systems Acceptance Review (AR).

Operations and Maintenance
as indicated by the title.
Results in:

final and permanent MFSC record of the project.

For a comparison, the following is a specification of software

life cycle practiced in industrial environments, [Shooman, 1983].

Conceptual
definition of system needs, and of system requirements

System specification
Hardware-software operational specification and System

operational specification

Preliminary design

RFP, preparation of proposal followed by proposal
modification and selection

Detailed design
module coding, software design and functional specification

Verification

module test, system integration, test simulation and

acceptance testing

Field deployment and maintenance
minor design modifications, discovery and fixing of field

bugs. Final check and data gathering, field release

IX-32

10. References.

(I) Aichele, D.G. "MSFC Software management and development

requirements", EB41, MA-O01-006-ZE, Jan 1983

(2) Bykat, A. "Evaluation of Applications Software Branch'

Computing System", EB43, June 1987

(3) Craft, R.H. "S&E Director's review: Applications Software

Branch", EB43, March 1987

(4) lllingworth, V. "Dictionary of computing", Oxford U.P., 1983

(5) Government Computer News, June 19, 1987, p.53

(6) Government Computer News, July 17, 1987, p.1

(7) Henry, G.G. "IBM RT PC architecture and design decisions"

IBM SA23-I057, 1986

(8) Hyter, D. "Task for Summer Faculty", letter to
DXO1/Ernestine Cothran, EB43 (87-14), 4/21/1987

(9) Lucas, J.H. "Software and data management division", EB41,

October 1986

(10) Miller, E. "Automated tools for software engineering",

IEEE 1979

(11) Mitze, R.W. "The Unix system as a software engineering

environment", in Hunke (ed), "Software Engineering

Environments", North-Holland, 1981

(12) NASA-MFSC, "Information and Electronic Systems Laboratory",
U.S. Gov. 730-067/40100, 1987

(13) Rauch-Hindin, W. "Software tools: new ways to chip software

into shape", Data Communications, Apr.1982, pp.83-113

(14) Shooman, M.L. "Software engineering", McGraw-Hill, 1983

(15) Weston, C.D., Stewart, G.A., Byte, Feb. 1987

IX-33

11. Glossary.

(I) BATSE:
Burst And Transient Source Experiment.

(2) Client:
machine capable of accessing server's resources.

(3) DRD:
Data Requirements Document.

(4) Emulator:
A software tool allowing execution on a host computer of a
program written for a target computer.

(5) Ethernet :
a baseband channel suitable for high speed transmission of
data in LAN communications.

(6) File server:
provides a file system and services for a network of
machine s.

(7) GANTT chart:
a bar chart such as tasks v. time.

(8) Heterogeneous system:
A networked system consisting of a set of multi-vendor
computers of possibly different architecture, integrated
into a single system.

(9) HOSC:
Huntsville Operations System Center.

(10) ICD:
Interface Control Document.

(11) IMC:
Image Motion Compensation.

(12) Integrated Program Development Environment:
An integrated set of programs and tools designed to
facilitate development of software. Typical components are:
full screen (windowing) editor, help facilities, programming
language processors, symbolic debuggers, monitoring tools,
source control and management tools, document generation
tools.

(13) Integrated Project Management Environment:
An integrated set of programs and tools designed to
facilitate design and management of software projects.
Typical components are: planning tools, charting tools,
facilities, programming design language, monitoring tools,
reporting management tools, document generation tools.

IX-34

(14) LAN:
Local Area Network - a network linking devices scattered
over a limited geographic area and providing for high speed
high bandwidth communication between these devices.

(15) Milestone:
a measurable significant achievement in course of project
development.

(16) MEA:
Materials Experiment Assembly.

(17) Modification-request control system:
manages request of modifications, error reports, and
debugging progress.

(18) Monitor:
a device which inspects and collects data during execution
to determine efficiency and utilization of a unit (software
or hardware).

(19) Network:
a number of workstations (or computer systems)
interconnected and capable of exchanging information using a
common communication protocol.

(20) Node:
a single addressable unit on a network. A number of devices
can be connected to a node.

(21) PERT:
Program Evaluation and Review Technique. An activity network
which represents the project's progress. The nodes of the
network represent milestones, while thebranches represent
activities which culminate in that milestone.

(22) POCC:
Payload Operations Control Center.

(23) RFP:
Request For Proposals.

(24) RPC:
Remote Procedure Call: a set of functions providing for
machine and operating system independent access of
components of a heterogeneous computing system.

(25) Server:
machine that provides a resource to a network.
Eg. file server - provides a file system and services for a

network of machines.

IX-35

(26) Simulator:
A program that provides on the host computer the (precise)
effect of execution of instructions native to a target
computer.

(27) Software Engineering:
an approach to engineering software, paying particular
attention to software life cycle consisting of planning,
design, implementation, verification and maintenance.

(28) Software Tool:
A computer program used to develop, test, analyze, or
maintain another computer program or its documentation.

(29) Source-code control system:
preserves different versions of the source and provides a
list of changes between the versions.

(30) SOW:
Statement Of Work.

(31) SRD:
System Requirements Document.

(32) System:
An assembly of interacting components, all functioning
towards achieving a specified goal. Components of a computer
system typically include personnel, hardware, and software.

(33) TCP/IP:
Transmission control protocol/internet protocol.

(34) User:
person logged in on a client.

(35) WBS:
Work Breakdown Structure.

(36) Workstation:
a single user machine; either a stand-alone or a client.
The major characteristics of a workstation are defined
[Weston, Stewart, 1987] as:

32 bit microprocessor, I-2 MIPS, 20+ MB hard disk, high-
resolution monitor with I MPIXELs, floating point
coprocessor, graphics operations, array processing,
multi-user operating system (eg. UNIX).

IX-36

12. Index.

AI 20, 28

Application I0
AR 36

BATSE 15, 38
Benefit 14
Client 38

Consistency checker 30

Cross-compiler 21

Cross-referencer 30
Disassembler 22

DRD 35, 38

Emulator 22, 30, 38

in-circuit 32, 33

Ethernet 18, 28, 38

File server 17, 27, 38

GANTT 21 , 38

Hardware logic analyzer

Heterogeneous system 20,

HOSC 15, 38
ICD 35, 38

IMC 38

Integrated program development

Integrated project management
LAN 17, 38

Ethernet 18, 28

Languages 14

logic analyzer 33

Management 14

MEA 15, 39

Milestone 9, 39

Modification-request control

Monitor 21, 39

NCS 20, 29
network 39

Client 38
File server 38

LAN 38

NCS 20, 29

NFS 20, 29

node 19, 28, 39
ONC 20

Server 39
User 40

32

38

Workstation 40

Network Computing System 20, 29

Network File System 20, 29

NFS 20, 29

ONC 20

PERT 21, 39

POCC 15, 39
print 19, 28

Program flow analyzer 30

Program Logic analyzer 30

environment 14, 38

environment 14, 38

system 24, 39

IX-37

Program sequencer 31
project

benefit 14
definition 10
development 14
management 14
specification 14

Resource 9
RFP 35, 39
RPC 39
server 19, 28, 38, 39

print server 19, 28
terminal server 19, 28

Simulator 31, 39
Software 14

tool 23, 40
Software Engineering 39,
Software monitor 31
Source-code control system
SOW 35, 40
SRD 35, 40
Syntax directed editor 31
system 12, 13, 40

capabilities 12, 13
funct ions 11
Scope 13

TCP/IP 21, 40
Tool 40
Tools 12, 14
Trace program 31
Unix 17
User 40
WBS 35, 4O
Workstation 40

40

23, 24, 40

IX-38

